

「精准的螺纹」是 YAMAWA的宗旨。

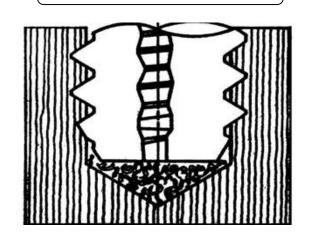
从基础认识螺丝攻 挤压丝攻篇

1.切削式丝攻和挤压丝攻的差异 · · · · · P4
2.挤压丝攻的特长 · · · · · · · · · P5
3.用挤压丝攻加工出来的内螺纹牙形 · · P6
4.内螺纹内径和饱和率 · · · · · · · · P7
5.不同的底孔径,所形成的内螺纹牙形·P10
6.基本的加工程序······P12
7.内螺纹、螺丝攻、量规的关系·····P14
8.挤压丝攻精度等级的设定 ·····P15
9.可用挤压丝攻加工的材料一览表 · · · P16
1 0.产品介绍 · · · · · · · · · · · · P18
11.高性能丝攻加工实例·····P21
1 2.MHRZ产品介绍 · · · · · · · · P22
1 3.底孔径检测棒介绍······P23

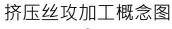
相较于切削式丝攻加工,是边切削边排屑,挤压丝攻则是利用塑型加工,挤压材料形成牙山。

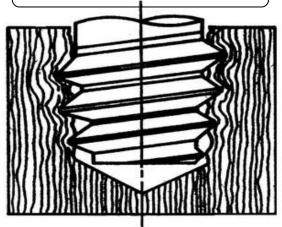
本公司备有切削式丝攻和挤压丝攻,两大类产品供 您选用。

从基础认识螺丝攻系列的挤压丝攻篇,汇整了挤压 丝攻与切削式丝攻的差异、牙山的形状、产品的特 长等内容,即使是初次使用挤压丝攻的使用者,也 可轻松上手。



1.切削式丝攻和挤压丝攻的差异


从金属纤维的内部组织,来分析切削式丝攻和挤压丝攻所加工出的内螺纹,切削加工时,会切断材料的金属纤维,而挤压加工时,是透过挤压材料形成牙山,金属纤维并不会被切断。

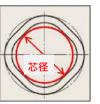

切削式丝攻加工概念图

被切削的部分,会产生切屑,要如何将切屑顺畅的排出,则是非常重要的课题。

利用塑型加工,挤压被加工材形 成牙山,不会产生切屑。

2.挤压丝攻的特长

• 无屑攻牙


因不会产生切屑,最适用在盲孔攻牙,且节省了切屑处理程序。

• 不易折损

因不需要排屑用之沟槽,因此螺丝攻的芯径较大, 也无切屑之干扰,所以不易折损。

切削式丝攻的沟剖面图和芯径

• 内螺纹中径精度高

因内螺纹是以挤压塑型而成,所以内螺纹表面光滑,中径尺寸安定。

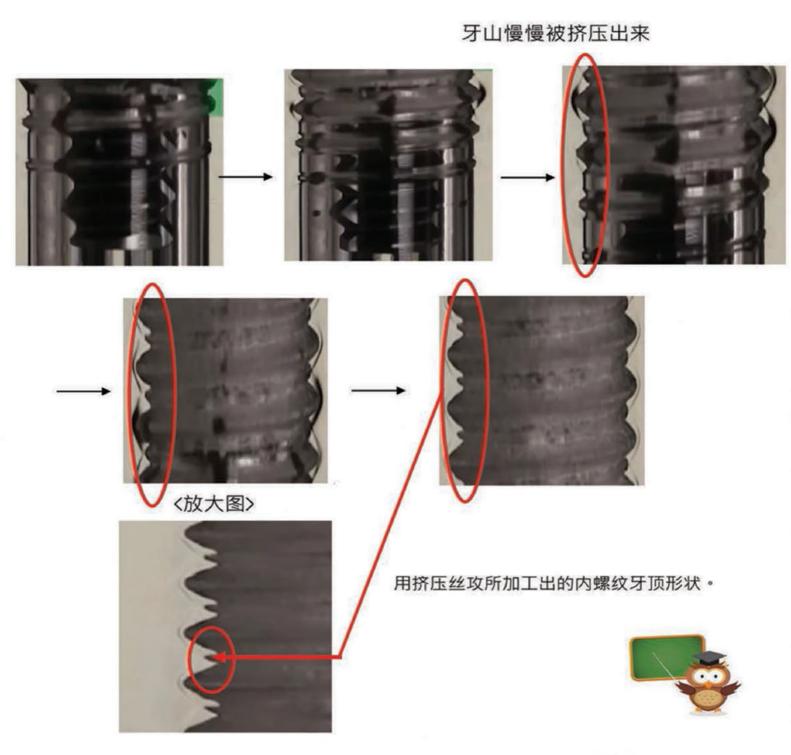
• 攻牙效率高使用寿命长

不具有会因为切削而磨耗的刀刃,因此比切削式丝攻更适合高速加工,且使用寿命也较长。 若施以氧化、氮化、TiN、TiCN处理,其使用寿命可延长至2~20倍。

• 仅限于加工延展性佳的材料

=>『可用挤压丝攻加工的材料』 请参阅P14。

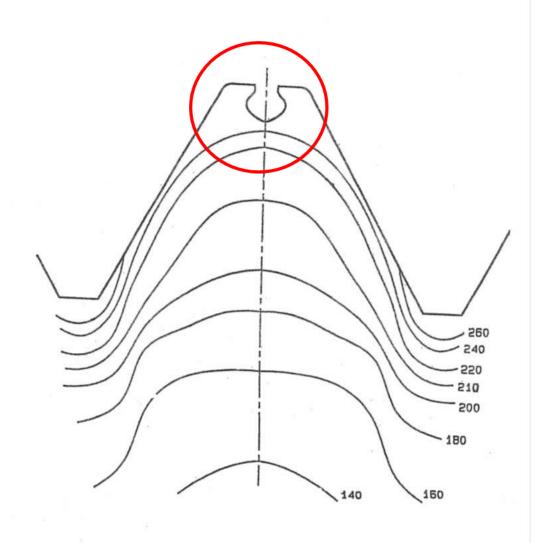
• 需严格管理底孔径


底孔径的误差范围,仅约为牙距的5%,比切削式丝攻更需严格管理底孔径。

• 攻牙扭力比切削式丝攻大2~3倍。

3.用挤压丝攻加工出来的内螺纹牙形

下图是挤压丝攻攻牙时的内螺纹剖面图,可清楚看出加工时材料受挤压,慢慢成形的情况,以及完成攻牙后,内螺纹最后所形成的独特山顶U形缺口牙形。

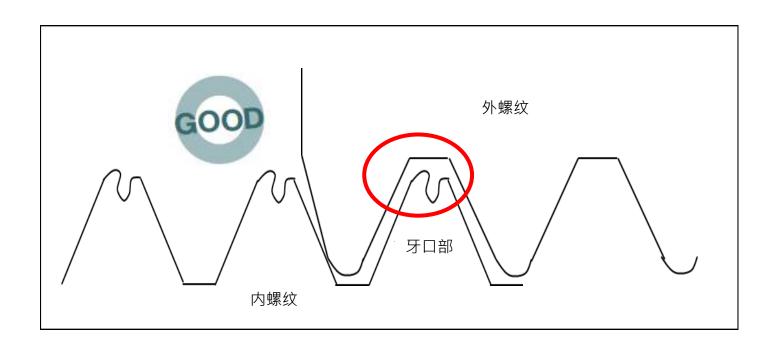


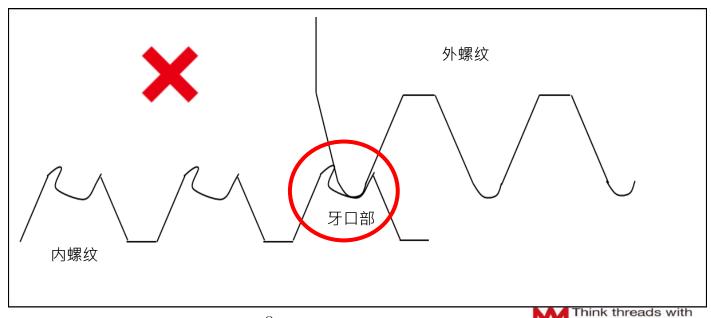
4.内螺纹内径和饱和率

挤压丝攻是透过挤压材料形成牙山。

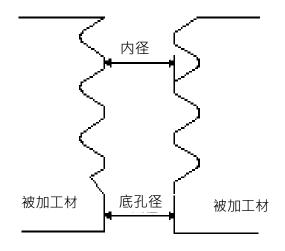
牙山左右两边的材料,受到丝攻挤压,所加工出来的内螺纹,

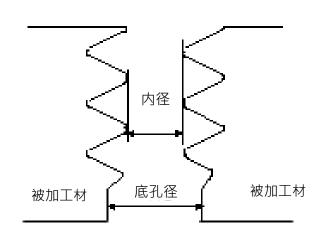
牙顶会形成像火山口一样的U形缺口,此部位被称为<mark>牙口</mark>。




附图9.2.7 SS400材挤压内螺纹的等硬度线图

牙口部过大时,容易产生的问题如下:

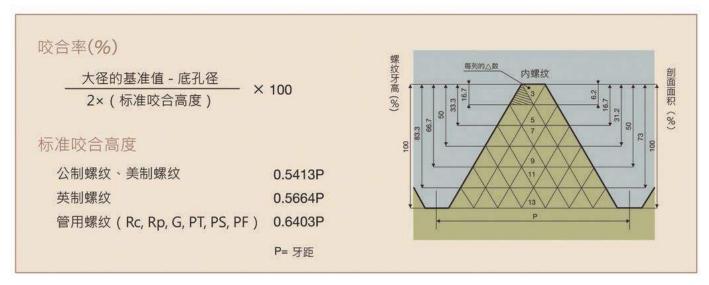

如果外螺纹锁歪,就非常容易卡进牙口,造成螺牙死锁或锁付不良的问题。而且如果牙口剥落,也可能造成电路板短路。



用切削式丝攻加工时,攻牙前的底孔径,等于攻牙后的内螺纹内径。原因是内螺纹是用切削出来的。而挤压丝攻是透过挤压底孔,慢慢塑型成内径,所以底孔径一定要比内径大。底孔径设定正确,才能挤压出适当的牙形。

切削式丝攻(底孔,径二内径)

挤压丝攻 (底孔径 > 内径)

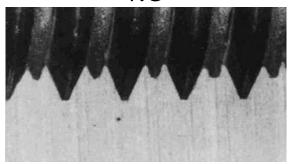

标准咬合高度与实际咬合高度的百分比,称为咬合率。

下图为不同底孔径,所形成的「内螺纹形状」和「咬合率」的变化。

攻牙时,必须考虑「咬合率」设定底孔尺寸。

攻牙时,在容许范围内加大底孔尺寸,可减少塑型面积,丝攻的攻牙负担减轻, 达到减少磨耗/损伤的效果。

■螺纹底孔径的咬合率计算式以及内螺纹牙高和剖面积的关系

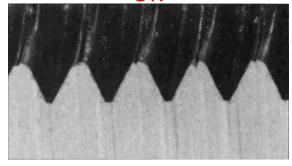

5.不同的底孔径,所形成的内螺纹牙形

产品: N-RS G7 M6X1 (B)

被加工材 : AC2C-T6 攻牙速度 : 20m/min

切削油 :不水溶性(油性)切削油

NG



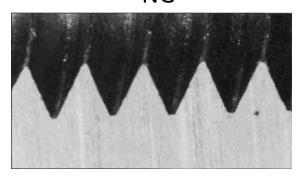
底孔径: ϕ 5.60

饱和率:78%

底孔径大于建议值,挤压量不足。

OK

底孔径: **ø**5.50


饱和率:89%

螺纹牙形正确,但内螺纹内径趋近

2级最小值,建议底孔径加大到

Ø5.55会最适当。

NG

底孔径: *ϕ*5.40

饱和率:125%

底孔径小于建议值,挤压量过多,

牙山过饱。

要怎么做才好呢?

弥满和综合型录中的『技术资料16.螺纹底孔径(挤压加工)用』内,有详细记载用挤压丝攻加工时,各尺寸的底孔径选用建议表和螺纹饱和率。

被加工材的种类或加工条件,均会影响牙山的挤压量,请参考本表,选用最佳的底孔径尺寸。

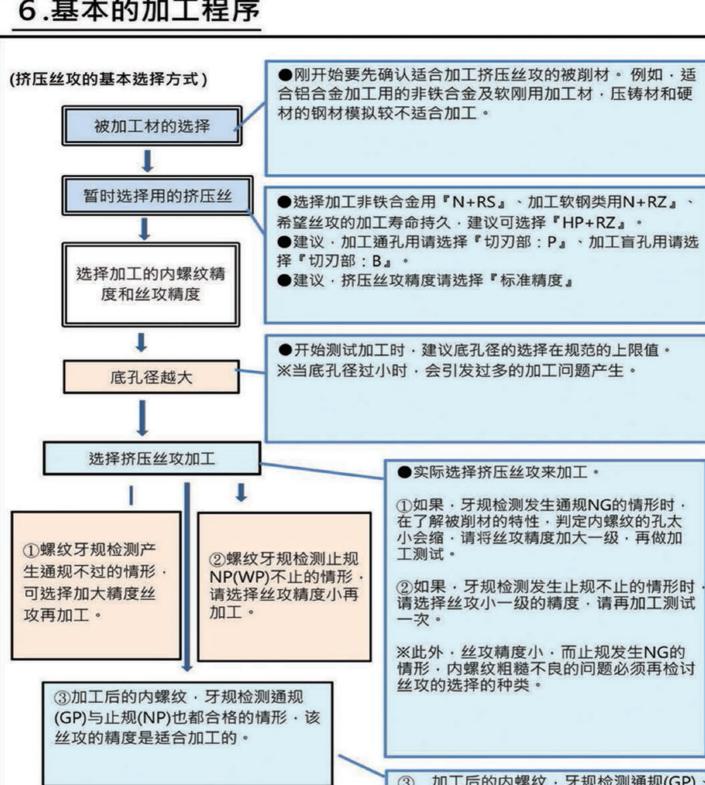
■公制螺纹用

单位:mm

尺寸	Rit	蜂級	各种		螺纹内径 /6H)	
		100%	90%	80%	Max.	Min.
M4 0.05	G4	0.89	0.90	0.92	0.705	0.700
M1× 0.25	G5	0.90	0.91	0.93	0.785	0.729
M 0 - 0 05	G4	1.09	1.10	1.11	0.983	0.000
M1.2× 0.25	G5	1.10	1.11	1.13		0.929
M1.4×0.3	G4	1.26	1.28	1.30	1 1 1 1 2	4.075
W1.4×U.3	G5	1.28	1.29	1.31	1.142	1.075
M 6-0.25	G4	1.43	1.43 1.44 1.46	4 004	4 004	
M1.6×0.35	G5	1.44	1.46	1.48	1.321	1.221
	G4	1.52	1.54	1.56		
1						

尺寸	等级	各种	饱和率的底	孔径	参考:内 (5H/		
-		100%	90%	80%	Max.	Min.	
	G5	4.57	4.62	4.66			
145-0.0	G6	4.59	4.63	4.67	4 224		
M5×0.8	G7	4.60	4.64	4.68	4.334	4.334	4.134
	G8	4.61	4.65	4.70			
M5×0.5	G7	4.77	4.80	4.82	4.599	4.459	
	G5	5.46	5.51	5.57			
Most	G6	5.47	5.53	5.58	F 450		4.047
M6×1	G7	5.49	5.54	5.59	5.153	4.917	
	G8	5.50	5.55	5.61			

■美制螺纹用


M 10 : m

	aw art	各种饱和率的底孔径			参考:内螺纹内径(2E		
尺寸	等级	100%	90% 80		Max	x. Min.	
No. 0 - 80UNF	G5	1.39	1.41	1.42	1.305	1.182	
No. 1 - 64UNC	G5	1.68	1.70	1.72	1.582	1.425	
No. 1 - 72UNF	G5	1.70	1.72	1.74	1.612	1.474	
	G4	1.96	1.98	2.01			
N- 0 501110	G5	1.97	1.99	2.02	4 074	4 005	
No. 2 - 56UNC	G6	1.98	2.01	2.03	1.871	1.695	
	G7	2.00	2.02	2.04			
	G4	1.98	2.01	2.03	1.912	1.756	
No. 2 - 64UNF	G5	2.00	2.02	2.04			
N- 2 4011NO	G4	2.25	2.28	2.31	2440	104	
No. 3 - 48UNC	G5	2.26	2.29	2.32	2.146	1.941	
	G4	2.29	2.31	2.34			
No. 3 - 56UNF	G5	2.30	2.32	2.35	2.197	2.025	
	G5	2.54	2.57	2.61		2.157	
No. 4 - 40UNC	G6	2.55	2.59	2.62	2.385		
	G7	2.57	2.60	2.63			

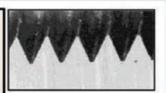
尺寸	10 tQ	各种饱和率的底孔径			参考:内螺纹内径(2	
	49.500	100%	90%	80%	Max.	Min.
No. 8 - 32UNC	G6	3.78	3.82	3.87		
	G7	3.79	3.84	3.88	3,530	3.302
	G8	3.81	3.85	3.89		
No 9 SCUNE	G5	3.81	3.85	3.89	2 606	2 404
No. 8 - 36UNF	G6	3.82	3.86	3.90	3.606	3.404
No. 10 - 24UNC	G6	4.30	4.35	4.41	3.962	2 602
	G7	4.31	4.37	4.42		3,683
N- 40 2011NE	G6	4.44	4.48	4.53	4.405	2.002
No. 10 - 32UNF	G7	4.45	4.50	4.54	4.165	3.963
- 10 0410:0	G6	4.96	5.01	5.07	4.507	4.244
No. 12 - 24UNC	G7	4.97	5.03	5.08	4.597	4.344
	G6	5.03	5.08	5.13		11111111
No. 12 - 28UNF	G7	5.04	5.09	5.14	4.724	4.496
1/4 - 20UNC	G6	5.71	5.78	5.85	5.257	
	G7	5.73	5.80	5.86		4.979
	G8	5.74	5.81	5.88		
				- ALCOHOLD		

6.基本的加工程序

型录说明的有点 困难理解,丝没精度的选择是是分别的,但是是一个人,但是是一个人,就不是很理解。

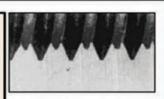
加工后的内螺纹·牙规检测通规(GP) 止规(NP)也都合格的情形时,表示所选 择的丝攻精度等级是适合加工的。

关于底孔径的选择 请参考下记说明。


底孔径的设定,基本使用内径针规检测,依检测结果稍微做 调整。

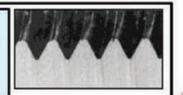
下记测试加工说明·由底孔径上限开始设定·通常底孔径依顺序向下限调整至 最适合的底孔径值出来。

(底孔径的基本设定方法)


上记第3点有说明·通规、止规检测内螺纹内径是没有问题。

④如果·通过端针规 检测内径发生NG的 情形时·底孔径往上 限调整·再加工测试。

底孔径过小·牙底孔 会过高。


⑤如果·不通过端针 规检测内径发生NG的 情形时·底孔径往下 限调整·再加工测试 看看。

底孔径过大·底孔会过 低。

⑥通、止针规检测也都没有问题的情形时,底孔径设定的数值是可直接加工完成。

底孔径过大、过小的情形·要调整多少才好呢?

目标螺纹小径尺寸为「A」·另外·加工后的螺纹小径尺寸为「B」。当时调整的目标数值为C·大致计算:(A-B)÷2=C。

<底孔径的调整说明>

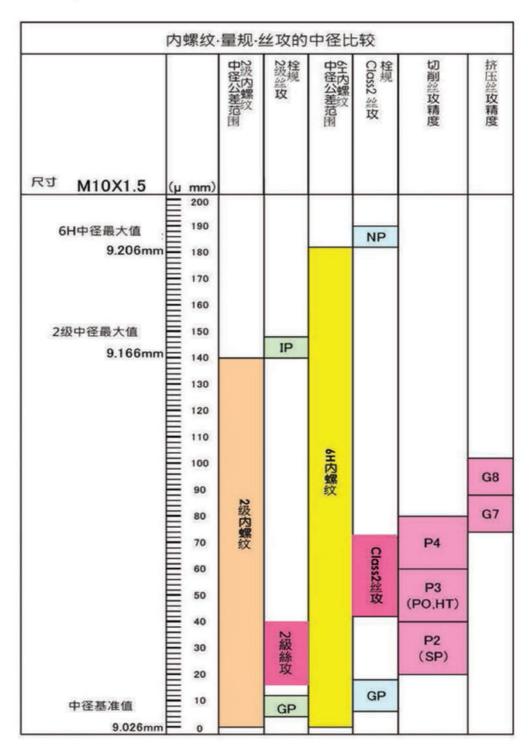
M6X1的螺纹小径设定目标·φ5.0(咬合率:93%)。

范例:底孔径设定「 ϕ 5.4」·加工后的內径底孔为「 ϕ 4.8咬合率为111%」·上记的图片第4点有说明小径加工后的情形· (5.0 - 4.8) ÷2=0.1

底孔径 ϕ 5.4加大0.1大于 ϕ 5.5·加工后的螺纹小径会比较接近 ϕ 5.5。

相反的 · 底孔径为「 ϕ 5.6」时 · 加工后的小径为「 ϕ 5.2咬合率 74%」上记图片第5点有说明小径加工后的情形 · (5.0 - 5.2) ÷ 2 = -0.1 ·

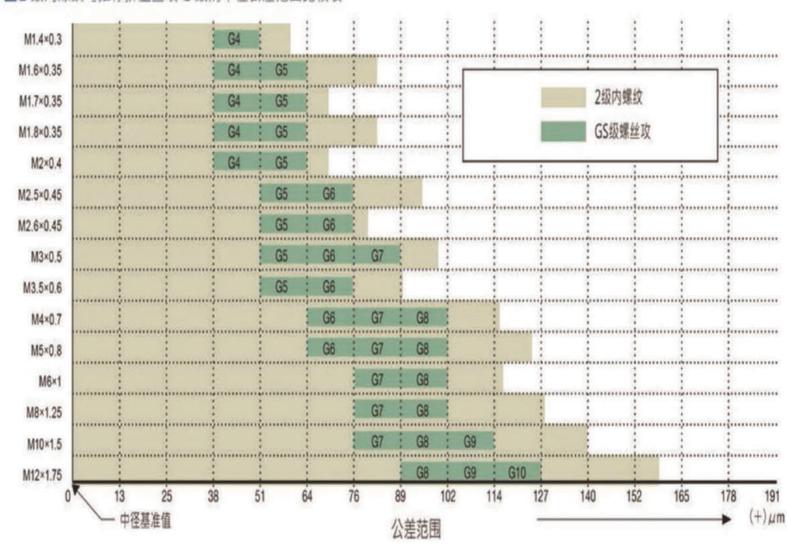
底孔径 ϕ 5.6减为0.1 小于 ϕ 5.0 · 加工后的的螺纹小径会比较接近 ϕ 5.0 ·


7.内螺纹、螺丝攻、量规的关系

下图是M10X1.5的挤压丝攻和2级内螺纹、6H内螺纹、量规和切削式丝攻的中径精度比较表。

挤压丝攻的标准精度公差,设定在内螺纹公差范围

 $(0\sim140\mu m)$ 的2/3 (93 μm)左右的位置。


由于挤压丝攻是 透过丝攻挤压被 加工材,形成螺 牙,所以内螺纹 的中径精度,是 由丝攻的中径精 度所决定。

8.挤压丝攻精度等级的设定

挤压丝攻的精度等级,是按照ANSI GH级的G级规范,中径的公差为 12.7μm,呈阶梯式上升,因为挤压塑型的方式,会依被削材的种类和 底孔径而不同,所以为了取得最适当的内螺纹尺寸,本公司备有加大 精度2~3等级的产品。

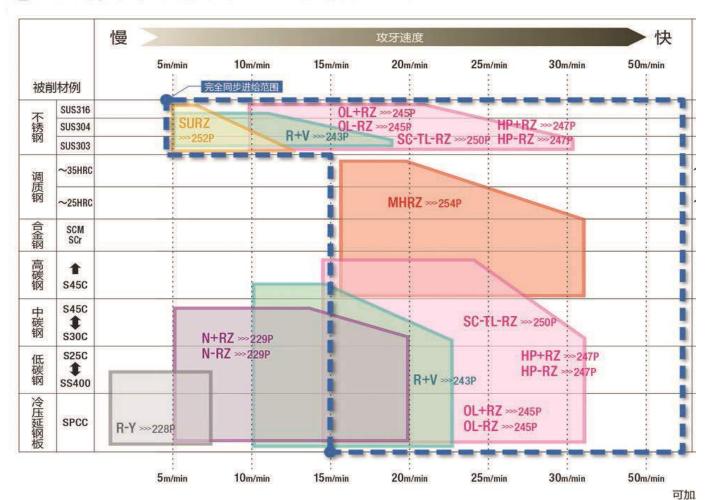
■2 级内螺纹与推荐挤压丝攻 G 级的中径公差范围比较表

9.可用挤压丝攻加工的材料一览表

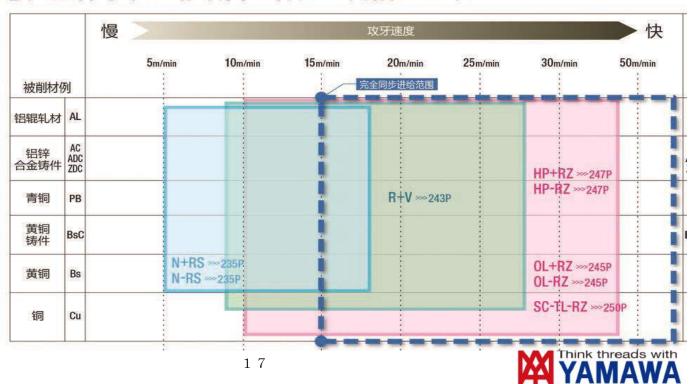
挤压丝攻仅限于加工延展性佳的材料。

可加工的材料一览表如下:

※铸铁、球墨铸铁、塑料等不具有延展性的材料不适用。



	铝滚轧材(AL)
	铝(AC)
非铁系	铝压铸材(ADC)
金属	锌合金(ZDC)
	铜(Cu)
	黄铜(Bs)
	软钢
铁系	中碳钢(S25C~S45C)
金属	不锈钢(SUS)
	快削钢



请参照弥满和综合型录中的商品体系表,依照您的加工条件,选用最合适的产 品。

▶ 产品体系表 钢铁材加工用挤压丝攻

▶ 产品体系表 非铁合金材加工用挤压丝攻

1 7

10.产品介绍

品名	特长	制作尺寸	吃入部牙数 材质 表面处理
钢铁合金用挤压丝攻 N+RZ/N-RZ	适合加工钢铁合金(碳钢、合金钢、普通钢)的挤压 丝攻。 也有全长100mm与150mm的 长柄系列产品「LS-N-RZ」。	M1 –M20 No. 0 - 1/4	4P 和 2P HSS 氧化处理
非铁合金用挤压丝攻 N+RS/N-RS	适合加工非铁合金(铝铸件、铝压铸件、黄铜等)的内螺纹用挤压丝攻。 也有全长100mm与150mm的长柄系列产品「LS-N-RS」。	M1 –M20 No. 0 - 1/4	4P 和 2P HSS 氮化处理
镀钛挤压丝攻 R+V/R-V	适合加工钢铁合金、非铁合金的镀钛挤压丝攻。	M1 -M6	4P 和 2P HSS 表面镀层
袖珍螺纹用挤压丝攻 MS+RS	·加工微小径螺纹用的挤压 丝攻。 ·新构型设计·提升工具刚 性·螺旋强度·丝攻偏耀 精度。 ·为了避免影响柄部的真圆 度·将刻印从柄部移至四 角部。	S0.6 - S0.9	2P HSS 表面无处理

品名	特长	制作尺寸	吃入部牙数 材质 表面处理
免用油挤压丝攻 OL+RZ/OL-RZ	•用于 M6以下的尺寸,已 去除毛边的薄铁板或加工 长度短的钢材,可免用油 攻牙的挤压丝攻。	M1 –M6 No. 2 - 1/4	4P HSS-P 表面镀层 ※无油沟
高碳钢用挤压丝攻 HP+RZ/HP-RZ	· 适合加工钢铁合金 (35HRC以下)或 轻合金·并可用于 高速加工(20~50 m/min)的挤压丝攻。	M1 –M20 No. 2 - 1/4	4P 和 2P HSS-P 表面镀层
袖珍螺纹高碳钢用 挤压丝攻 HPsRZ	 加工微小径螺纹用的挤压丝攻。 新构型设计,提升工具刚性,螺旋强度,丝攻偏矲精度。 为了避免影响柄部的真圆度,将刻印从柄部移至四角部。 	S0.6 - S0.9	2P HSS-P 表面镀层

品名	特长	制作尺寸	吃入部牙数 材质 表面处理
IT产业用挤压丝攻 SC-TL-RZ	・可加工出毛边少高质量的内螺纹、工具使用寿命延长。・使用水溶性切削油、工具使用寿命更长。・扩大高速加工范围。	M1-M6	1P HSS-P 表面镀层
不锈钢用挤压丝攻 SURZ	 ・丝攻谷底部采用特殊形状设计,可有效控制内螺纹内径形状。 ・丝攻凸部采特殊设计,有效降低攻牙扭力。 ・加工HDD、IT上常用的不锈钢零件,效果优异。 	M1-M6	2P HSS-P 表面镀层
中硬度碳钢用挤压丝攻 MHRZ <加工件>	 ・本公司独创的构型设计・有效降低加工扭力。 ・采用耐摩耗性优异的材料和表面涂层处理・大幅提升工具耐久力。 ・可安定的加工调质材(~35HRC)。 ・可使用水溶性切削油。 	M6-M16	4P和2P HSS-P 表面镀层

11.高性能丝攻加工实例

在挤压丝攻中,广受好评的高性能丝攻HP+RZ/HP-RZ的加工实例介绍。

		加工条件						
尺寸	被加工材	底孔径 (mm)	加工长 (mm)	底孔形状	速度 (m/min)	机械	切削油	加工数(孔)
M1X0.25 G4 (B)	SUS420	0.87	1.5	盲孔	0.9	专用机	油性	1,400
M1.4X0.3 G5(P)	SUS304	1.26	3	通孔	8	攻牙机	润滑剂	40,000
M1.6X0.35 G4 (B)	ADC12	1.44	3	盲孔	3	专用机	水溶性	5,6000
M1.7X0.35 G4 (B)	SUS316	1.56	2.5	盲孔	8	专用机	油性	3,000
M2X0.4 G5 (P)	SUS304	1.77	4	通孔	7	专用机	油性	200,000
M2X0.4 G5 (P)	SPC	1.78	3	通孔	6.3	专用机	油性	100,000
M2X0.4 G4 (P)	SUS420	1.82	4	盲孔	23	专用机	油性	4,000
M2.6X0.45 G6 (P)	SS400	2.38	5	盲孔	6.5	专用机	油性	11,000
M2.6X0.45 G6 (P)	SPC	2.37	3	通孔	12	专用机	油性	11,000
M3X0.5 G5 (P)	SPC	2.75	6	通孔	12	CNC	干式	8,000
M3X0.5 G5 (P)	SUS303	2.77	5.5	通孔	9.4	专用机	水溶性	20,000
M3X0.5 G5 (P)	SUS304	2.78	5	通孔	8	专用机	油性	100,000
M3X0.5 G5 (P)	SPC	2.77	3.5	通孔	10.4	专用机	油性	65,000
M4X0.7 G5 (B)	ADC12	3.65	10	盲孔	50	CNC	水溶性	85,000
M4X0.7 G5 (P)	SPC	3.65	3	通孔	20	专用机	干式	6,000
M6X1 G7 (P)	锌钢板	5.55	4	通孔	15	攻牙机	干式	10,000
M6X1 G6 (P)	S45C	5.5	10	盲孔	10	NC车床	水溶性	380
M10X1.25 G7 (B)	S48C	9.45	25	盲孔	25	专用机	油性	600
M16X1.5 G9 (B)	S45C	15.37	15	盲孔	15	专用机	油性	2,400

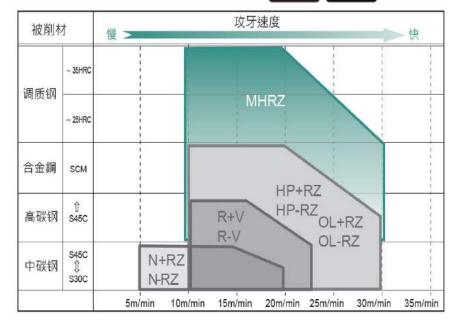
12.MHRZ产品介绍

■中硬度碳钢用挤压丝攻

产品特性

中硬度碳钢用挤压丝攻

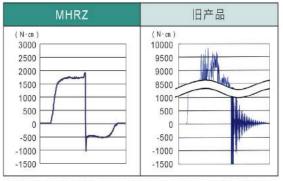
■特长


攻牙资料

- 本公司独创的构型设计,有效降低 加工扭力!
- 采用耐摩耗性优异的材料和表面 涂层处理,大幅提升工具耐久力!
- ●可安定的加工调质材 $(\sim 35HRC)!$
- ●可使用水溶性切削油!

MHRZ M6~M14

镀层



加工数据/攻牙扭力比较

加工穴数 MHRZ 可鑑線加工 旧产品 1孔都无法加工 200 400 600 800 1000 (加工孔) 0

加工	条件	ĺΜ	112×1.5]
被	剃	材	S CM440(调质)/ 35HRC
底	孔	径	φ11.3mm
攻	牙长	度	18mm(通孔)
攻	牙 速	度	20m/min
机		械	MC(完全同步进给)
攻5	F用切削	川油	水溶性切削油

攻牙扭力比较

切削扭力高·原本很难用挤压丝攻加工的硬度35HRC的SCM440(调质材)·MHRZ 也能安定的加工出内螺纹!

切削扭力高、原本很 难用挤压丝攻加工的 硬度35HRC的 SCM440(调质材), MHRZ也能安定的加 工出内螺纹!!

13.底孔径检测棒介绍

本公司生产的底孔径检测棒,可轻松的检查底孔状况,请多加利用。加工出合适 并准确精良的底孔径,减少加工问题及提高丝攻寿命,所以有效管理攻牙前的底 孔径,是很重要的。

挤压丝攻用底孔径检测棒	特长	制作尺寸
挤压丝攻用底孔径检测棒 平行型 CPR-S	可检查各类的底孔径和底孔深度的挤压丝攻 用底孔径检测棒(平行型)。采用高速工具 钢材,提升工具耐磨性。盲孔也适用。	M2 - M12 No. 2 - 1/2
挤压丝攻用底孔径检测棒 锥度型 CPR-T YAMAWA	1支就可简单的检查挤压丝攻用的底孔径检测棒 (锥度型)。采用高速工具钢材、耐磨耗性佳。通 孔、盲孔均适用。。	M2 - M12 No. 2 - 1/2
挤压丝攻用底孔径检测棒	挤压丝攻R-Y的底孔径管理用检测棒。	M2 - M8

加工合适并准确精良的底孔径,能减少攻牙加工问题及提高丝攻寿命,所以有效管理攻牙前之底孔径是很重要的。

1)底孔弯曲变形

2)底孔歪斜 3)底孔口径过大 4)孔径过小

